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Abstract

While the untargeted black-box transferability of adver-
sarial perturbations has been extensively studied before,
changing an unseen model’s decisions to a specific ‘tar-
geted’ class remains a challenging feat. In this paper,
we propose a new generative approach for highly trans-
ferable targeted perturbations (TTP). We note that the ex-
isting methods are less suitable for this task due to their
reliance on class-boundary information that changes from
one model to another, thus reducing transferability. In con-
trast, our approach matches the perturbed image ‘distri-
bution’ with that of the target class, leading to high tar-
geted transferability rates. To this end, we propose a new
objective function that not only aligns the global distribu-
tions of source and target images, but also matches the
local neighbourhood structure between the two domains.
Based on the proposed objective, we train a generator
function that can adaptively synthesize perturbations spe-
cific to a given input. Our generative approach is in-
dependent of the source or target domain labels, while
consistently performs well against state-of-the-art methods
on a wide range of attack settings. As an example, we
achieve 32.63% target transferability from (an adversari-
ally weak) VGG19BN to (a strong) WideResNet on Ima-
geNet val. set, which is 4× higher than the previous best
generative attack and 16× better than instance-specific it-
erative attack. Code is available at: https://github.

com/Muzammal-Naseer/TTP.

1. Introduction

We study the challenging problem of targeted transfer-
ability of adversarial perturbations. In this case, given an
input sample from any source category, the goal of the ad-
versary is to change the decision of an unknown model to
a specific target class (e.g., misclassify any painting im-
age to Fire truck, see Fig. 1). This task is significantly
more difficult than merely changing the decision to a ran-
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Figure 1: Attack Overview (TTP): Instead of finding perturbations
specific to a class-boundary information learned by a model, TTP
seeks to match global distribution statistics between the source and
the target domains. Specifically, our generator function is trained
to maximize agreement between the perturbed source distribution,
its augmented version and the target distribution in the feature
space. Importantly, our attack can function in an unsupervised
fashion and does not require source domain to be the same as tar-
get (e.g., perturbations can be learned from paintings to transfer
on natural images).

dom target class or any similar class (e.g., changing ‘cat’
to ‘aeroplane’ is more difficult than altering the decision
to ‘dog’). Target transferability can therefore lead to goal-
driven adversarial perturbations that provide desired con-
trol over the attacked model. However, target transferabil-
ity remains challenging for the current adversarial attacks
[26, 24, 4, 44, 15, 14, 13, 21, 42] that transfer adversarial
noise in a black-box setting, where architecture and training
mechanism of the attacked model remain unknown, and the
attack is restricted within a certain perturbation budget.

We observe that modest performance of existing meth-
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ods on targeted transferability is due to their reliance on
class-boundary information learned by the model which
lacks generalizability. For example, iterative instance-
specific attacks rely on the classification score information
to perturb a given sample, thereby ignoring the global class-
specific information [26, 4, 44, 14]. Such adversarial direc-
tions also vary across different models [24], leading to poor
target transferability [24, 4]. On the other hand, although
universal and generative perturbations are designed to en-
code global noise patterns [27, 36, 32], they still exploit the
class impressions learned by a neural network which alone
are not fully representative of the target distribution, thereby
achieving only modest black-box fooling rates [37]. Fur-
thermore, they are dependent on the classification informa-
tion, necessitating a supervised pretrained model for gen-
erator’s guidance and therefore cannot directly work with
unsupervised features [1, 9]. Another group of techniques
exploit intermediate features, but they either find untargeted
perturbations by design [29, 38] or are limited in their ca-
pacity to transfer targeted perturbations [21, 15, 13, 14].

We introduce a novel generative training framework
which maps a given source distribution to a specific target
distribution by maximizing the mutual agreement between
the two in the latent space of a pretrained discriminator. Our
main contributions are:

• Generative Targeted Transferability: We propose a novel
generative approach to learn transferable targeted ad-
versarial perturbations. Our unique training mechanism
allows the generator to explore augmented adversarial
space during training which enhances the transferability
of adversarial examples during inference (Sec. 3.1).

• Mutual Distribution Matching: Our training approach is
based on maximizing the mutual agreement between the
given source and the target distribution. Therefore, our
method can provide targeted guidance to train the gener-
ator without the need of classification boundary informa-
tion. This allows an attacker to learn targeted generative
perturbations from the unsupervised features [1, 9] and
eliminate the cost of labelled data (Sec. 3.2).

• Neighbourhood Similarity Matching: Alongside global
distribution matching, we introduce batch-wise neigh-
bourhood similarity matching objective between adver-
sarial and target class samples to maximize the local
alignment between the two distributions (Sec. 3.3).

Our extensive experiments on various ImageNet splits and
CNN architectures show state-of-the-art targeted transfer-
ability against naturally and adversarially trained models,
stylized models and input-processing based defenses. The
results demonstrate our benefit compared to recent targeted
instance-specific as well as other generative methods. Fur-
ther, our attack demonstrates rapid convergence.

2. Related Work
Iterative Instance-Specific Perturbations: After Szegedy
et al. [41] highlighted the vulnerability of neural networks,
many adversarial attacks have been introduced to study if
the adversarial examples are transferable from one model
to another, when a target model is unknown. Among these,
iterative instance-specific attacks [4, 44, 5] perturb a given
sample by iteratively using gradient information. Target
transferability of such attacks is very poor [4, 24] (as shown
in Sec. 4). Other attacks also use feature space either by
maximizing the feature difference [45, 11, 22] or apply-
ing attention [43] or avoiding non-linearity while back-
propagating gradients [8] or exploiting skip-connections
[42]. However, these attacks are mainly designed to en-
hance non-targeted transferability which is an easier prob-
lem. Recently, different instance-specific (transferable) tar-
geted attacks have been proposed including [21] which in-
troduces a triplet loss to push adversarial examples towards
the target label while increasing their distance from the orig-
inal label. Inkawhich et al. [13, 14] proposed to exploit fea-
ture space [15] along with the classifier information [14] to
generate target adversaries that are shown to transfer rela-
tively better than other instance-specific attacks. These at-
tacks [13, 14] have the following limitations. a) They need
access to a labeled dataset e.g., ImageNet [39] in order to
train one-vs-all binary classifiers for attacked target classes.
b) They need to identify best performing single layer [13] or
a combination of layers [14] which adds further complexity
to attack optimization. c) Finally, the attack performance
degrades significantly with quality of features, e.g., it strug-
gles to transfer target perturbations from VGG models [13].
Universal Perturbation: In contrast to instance-specific
perturbations, [27] learns a single universal noise pattern
which is representative of the entire data distribution and
can fool a model on majority of samples. Li et al. [23] in-
troduce gradient transformation module to find smooth uni-
versal patterns while [29] shows that such patterns can be
found without any training data. Although universal pertur-
bations [27, 28, 29, 23] based attacks are efficient (the at-
tacker just needs to add the noise to any given sample at in-
ference), they are limited in their capacity to yield transfer-
able adversaries which can generalize across different data
distributions and models [36, 32].
Generative Perturbations: Generative adversarial pertur-
bations perform better than directly optimizing universal
noise [38, 36, 32]. Poursaeed et al. [36] proposed the first
generative approach to adapt perturbations to an input sam-
ple. Naseer et al. [32] improved this framework with rel-
ativistic training objective which also allows cross-domain
transferability. Our method belongs to the generative cate-
gory and can adapt to an input sample with a single forward
pass. Unlike [38, 36, 32], we seek to fool the model by
matching distributions of source and targets with distribu-



tion matching and neighbourhood similarity criteria. Our
proposed framework does not require labeled source or tar-
get data and can extract target perturbations from a discrim-
inator model trained in an unsupervised manner while pre-
vious generative methods are dependent on class-boundary
information learned by the model. Further, our method con-
verges faster (Sec. 4) and provides improved targeted trans-
ferability owing to its novel loss and training mechanism.

3. Generating Targeted Adversaries
Our goal is to craft adversarial perturbations δ that can

fool a model to misclassify any given input to a specific tar-
get class t. We assume access to source and target domain
data represented by P andQ, from which the source and tar-
get class samples are obtained i.e., xs ∼ P , xt ∼ Q. The
source and target domains are likely to be non-aligned i.e.,
P 6= Q, making it challenging to achieve targeted transfer-
ability of adversarial perturbations. We also consider a per-
turbed source data P ′ that comprises of adversarially ma-
nipulated samples x′s ∼ P ′ where x′s = xs+ δ. xs, x′s and
xt represent source, adversarial and target domain samples
while Dψ(xs), Dψ(x′s) and Dψ(xt) are their correspond-
ing latent distributions.

3.1. Generative Model

We propose a generative approach to perturb the source
domain samples xs to a specified target class. The frame-
work (see Fig. 2) consists of a generator Gθ and a discrimi-
natorDψ parameterized by θ and ψ, respectively. The gen-
erator function Gθ learns a mapping from the source images
to the target category such that the input images are mini-
mally changed i.e., adversarial noise δ is strictly constrained
under a norm distance l∞ ≤ ε. This is ensured by project-
ing the unbounded adversaries from Gθ within fixed norm
distance of xs using a differentiable clipping operation,

x′s = clip
(

min(xs + ε,max(W ∗ Gθ(xs),xs − ε))
)
, (1)

where, W is a smoothing operator with fixed weights that
reduces high frequencies without violating the l∞ distance
constraint. The smooth projection in Eq. 1 (denoted by P
in Fig. 2) not only tightly bounds generator’s output within
l∞ norm but also encourages avoiding redundant high fre-
quencies [35] during the optimization process. This allows
the generator to converge to a more meaningful solution.

The existing generative designs for adversarial attacks
[36, 32] leverage the decision space of the discriminator to
craft perturbations. In such cases, the class-boundary in-
formation learned by the discriminator is used to fool DNN
models (e.g. for ImageNet, discriminator is pretrained on
1k classes). This dependence is problematic since an at-
tacker must have access to a discriminator trained on large-
scale labeled dataset [3]. Attacker then tries to learn target

Algorithm 1 Generating TTP
Require: Source data Xs, Target data Xt, pretrained discrimina-

tor Dψ , perturbation budget ε, loss criteria LG .
Ensure: Randomly initialize the generator, Gθ

1: repeat
2: Randomly sample mini-batches xs ∼ Xs and xt ∼ Xt

3: Create augmented copy of the source mini-batch x̃s.
4: Forward-pass xs and x̃s through the generator and

generate unbounded adversaries; x′s, x̃′s.
5: Bound the adversaries using Eq. 1 such that:

‖x′s − xs‖∞ ≤ ε and ‖x̃′s − x̃s‖∞ ≤ ε

6: Forward pass x′s, x̃′s and xt through Dψ .
7: Compute the matching losses; L, Laug and Lsim using

Eq. 3, 4 and 8, respectively.
8: Compute the generator loss given in Eq. 9.
9: Backward pass and update Gθ

10: until Gθ converges.

class impressions using either cross-entropy (CE) [36] or
relativistic CE [32]. Thus, the generated perturbations are
directly dependent on the quality of the discriminator’s clas-
sification space. Furthermore, the generated adversaries are
dependent on the input instance-specific features and do not
model the global properties of the target distribution, result-
ing in only limited transferability.

To address above limitations, our generative design mod-
els the target distributionQ and pushes the perturbed source
distribution P ′ closer to Q using the latent space of Dψ ,

‖ δ ‖∞≤ ε, s.t., Dψ(x′s) ≈ Dψ(xt). (2)

This global objective provides two crucial benefits. First,
reducing mismatch between perturbed and target distribu-
tions provides an improved guidance to the generator. The
resulting perturbations well align the input samples with the
target distribution, leading to transferable adversaries. Sec-
ond, the distributions alignment task makes us independent
of theDψ’s classification information. In turn, our approach
can function equally well with a discriminator trained in a
self-supervised manner on unlabelled data [1, 9]. In our
case, we simply align the feature distributions from Dψ to
match P ′ andQ. Thus, for a given sample x, n-dimensional
features are obtained i.e., Dψ(x) ∈ Rn. If Dψ is trained in
a supervised manner on ImageNet then n = 1000, and if
Dψ is trained in an unsupervised fashion then n is equal to
the output feature dimension.

3.2. Distribution Matching

We measure the mutual agreement between P ′ andQ us-
ing Kullback Leibler (KL) divergence defined on discrimi-
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Figure 2: Targeted Transferable Perturbations: During training, TTP matches adversarial and augmented adversarial samples to a target
domain within discriminator’s latent space for improved transferability. The adversarial samples corresponding to original and augmented
images are bounded (via projection) around their source samples to explore adversarial space around natural as well as augmented samples.

nator features Dψ(x′s) and Dψ(xt),

DKL(P ′‖Q) = 1
N

N∑
i=1

n∑
j=1

σ(Dψ(x′,is ))j log
σ(Dψ(x′,i

s ))j
σ(Dψ(xi

t))j
,

where N represents the number of samples, n is the dis-
criminator’s output dimension, and σ denotes the softmax
operation. In simple terms, KL divergence measures the
difference between two distributions in terms of the aver-
age surprise in experiencing xt when we expected to see
x′s. Since KL divergence is asymmetric i.e.DKL(P ′‖Q) 6=
DKL(Q‖P ′), and not a valid distance measure, we define
our loss function for distribution matching [20] as follows:

L = DKL(P ′‖Q) +DKL(Q‖P ′). (3)

As a regularization measure, we add augmented versions
of the source domain samples during distribution match-
ing. This enables the generator to focus specifically on
adding target class-specific patterns that are robust to in-
put transformations. To this end, we randomly apply rota-
tion, crop resize, horizontal flip, color jittering or gray scale
transformation to create augmented samples x̃s from the
original xs. The x̃s ∼ P̃ are passed through the Gθ and
the perturbed augmented samples x̃′s ∼ P̃ ′ are projected
using Eq. 1 to stay close to the augmented samples i.e.,
‖x̃′s − x̃s‖∞ ≤ ε. No augmentation is applied to the target
domain samples. We then pass x̃′s through the discrimi-
nator and compute the mutual agreement between Dψ(x̃′s)
and Dψ(xt) as follows:

Laug = DKL(P̃ ′‖Q) +DKL(Q‖P̃ ′). (4)

The impact of data augmentations and their effectiveness
for our proposed targeted attack is studied in Sec. 4.

3.3. Neighbourhood Similarity Matching

The above objective promotes alignment between the
distributions but does not consider the local structure e.g.,
the relationship between a sample and its augmented ver-
sions. For a faithful alignment between perturbed source
samples and the target class samples, we propose to also
match the neighbourhood similarity distributions between
the two domains. Specifically, consider a batch of target
domain samples {xit}Ni=1 and a batch of perturbed source
domain samples {x′is }Ni=1. For the case of x′s, in a given
training batch, we compute a similarity matrix Ss whose
elements encode the cosine similarity between the original
sample and its augmented version x̃′s, i.e.,

Ssi,j =
Dψ(x′,is ) ·Dψ(x̃′,js )

‖Dψ(x′,is )‖‖Dψ(x̃′,js )‖
. (5)

In contrast, for the case of xt, we compute similarity be-
tween only the original target samples (no augmentations)
as we need to model the local neighbourhood connectiv-
ity in the target domain. This choice is impractical for the
source domain case where many categories co-exist, while
for the target distribution, we assume a single category.
Thus the target similarity matrix St is computed as,

Sti,j =
Dψ(xit) ·Dψ(xjt )

‖Dψ(xit)‖‖Dψ(xjt )‖
. (6)

The resulting similarity matrices are normalized along the
row dimension with softmax to obtain probability estimates,

S̄i,j =
exp(Si,j)∑
k exp(Si,k)

, where, S ∈ {Ss,St}. (7)

Here, each term shows the probability with which the two
sample pairs are related to each other. Given S̄s and S̄t, we



compute the KL divergence to enforce a loss term that seeks
to match the local neighbourhood patterns between source
and target domains,

Lsim =
∑
i,j

S̄ti,j log
S̄ti,j
S̄si,j

+
∑
i,j

S̄si,j log
S̄si,j
S̄ti,j

. (8)

3.4. Overall loss function

Finally, the generator parameters are updated by mini-
mizing the following loss (Algorithm 1):

LG = L+ Laug + Lsim. (9)

This loss encourages the generator to perturb source sam-
ples that not only match the global characteristics of the tar-
get distribution (L + Laug), but also the local information
based on neighbourhood connectivity (Lsim).

4. Experiments
Our generator Gθ is based on ResNet architecture [17],

and outputs an adversarial sample with the same size as of
input (Fig. 3). This generator architecture is the same as in
the baseline generative attacks [36, 32]. Our discriminator
Dψ is pre-trained in a supervised or self-supervised manner.
For training Gθ, we freeze Dψ . We use Adam optimizer
[19] with a learning rate of 10−4 (β1 = .5, β2 = .999) for
20 epochs. For source domain data, we use 50k random im-
ages from ImageNet train set. Our method is not sensitive to
the choice of source samples since it can learn transferable
perturbations even from other domains e.g. Paintings. Simi-
lar to other generative methods [36, 32], we fix source data.
For target domain data, we use 1300 images for each target
collected from ImageNet training set (without their original
labels). We used default settings or implementations as pro-
vided by the authors of baseline attacks. Similarly, we used
open-sourced (pretrained) stylized [7], adversarial [40] and
purifier (NRP) [30] models to evaluate robustness.

4.1. Evaluation Settings

We perform inference on ImageNet validation set (50k
samples). No augmentations are applied at inference time.
The perturbation budget is tightly bounded and clearly men-
tioned in each experiment following the standard practices
l∞ ≤ 16 [4, 15, 14] and l∞ ≤ 32 [32, 23]. We perturb
all the ImageNet val. samples (except the target samples) to
the pre-defined target class. We repeat this process for all
the given targets and report Top-1 (%) accuracy averaged
across all targets. We compare our method under two main
settings (10-Targets and 100-Targets), as described below.
10-Targets: We further consider two settings. (a) 10-
Targets (subset-source) which is consistent with [13] and
has a subset of source classes at inference. (b) 10-Targets
(all-source) which is a more challenging large-scale setting

Naturally Trained (IN) ModelsSrc. Attack
VGG19BN Dense121 ResNet50 ResNet152 WRN-50-2

V
G

G
19

B
N

PGD [26] 95.67∗ 0.31 0.30 0.20 0.25
MIM [4] 99.91∗ 0.92 0.68 0.36 0.47
DIM [44] 99.38∗ 3.10 2.08 1.02 1.29
DIM-TI [5] 89.71∗ 1.08 0.66 0.42 0.45
Po-TRIP [21] 99.40∗ 4.61 3.21 1.78 2.01
GAP [36] 98.23∗ 16.19 15.83 5.89 7.78
CDA [32] 98.30∗ 16.26 16.22 5.73 8.35
Ours-P 97.38∗ 45.53 42.90 26.72 31.00
Ours 98.54∗ 45.77 45.87 27.18 32.63

VensOurs 97.34∗ 71.41 71.68 50.78 48.03

D
en

se
12

1

PGD [26] 1.28 97.40∗ 1.78 1.01 1.37
MIM [4] 1.85 99.90∗ 2.71 1.68 1.88
DIM [44] 7.31 98.81∗ 9.06 5.78 6.29
DIM-TI [5] 0.91 88.59∗ 1.18 0.77 0.86
Po-TRIP [21] 8.10 99.00∗ 11.21 7.83 8.50
GAP [36] 39.01 97.30∗ 47.85 39.25 34.79
CDA [32] 42.77 97.22∗ 54.28 44.11 46.01
Ours-P 57.91 97.41∗ 71.35 55.57 53.45
Ours 58.90 97.61∗ 68.72 57.11 56.80

DensOurs 76.96 96.25∗ 88.81 83.48 81.85

R
es

N
et

50

PGD [26] 0.92 1.38 93.74∗ 1.86 1.89
MIM [4] 1.58 3.37 98.76∗ 3.39 3.17
DIM [44] 9.14 15.47 99.01∗ 12.45 12.61
DIM-TI [5] 0.79 2.12 88.91∗ 1.47 1.45
Po-TRIP [21] 12.01 19.43 99.22∗ 14.41 15.10
GAP [36] 58.47 71.72 96.81∗ 64.89 61.82
CDA [32] 64.58 73.57 96.30∗ 70.30 69.27
Ours-P 73.09 84.76 96.63∗ 76.27 75.92
Ours 78.15 81.64 97.02∗ 80.56 78.25

RensOurs 90.43 94.39 96.67∗ 95.48∗ 92.63

Table 1: Target Transferability: {10-Targets (all-source)} Top-
1 target accuracy (%) averaged across 10 targets with 49.95K
ImageNet val. samples. Perturbation budget: l∞ ≤ 16. Our
method outperforms previous instance-specific as well as genera-
tive approaches by a large margin. ’*’ indicates white-box attack.
Ours-P represents TTP trained on Paintings.

as source images can come from all the ImageNet classes
except the target class. For consistency and direct compari-
son, the ten target classes are same as in [13].

−10-Targets (subset-source): Following [13], for each tar-
get class, 450 source samples belonging to remaining 9
classes (except target class) become inputs to Gθ to be trans-
ferred to the selected target.

−10-Targets (all-source): For each target class, samples of
all 999 source classes (except the target class) in ImageNet
val. set are considered i.e., for each target class, 49,950
samples of 999 classes become inputs to Gθ.

100-Targets (all-source): We divide ImageNet 1k classes
into 100 mutually exclusive sets. Each set contains 10
classes. We randomly sample 1 target from each set to cre-
ate 100 targets (see Appendix E for more details). Gener-
ators are trained against these targets and evaluated on Im-
ageNet val. set in 100-Targets (all-source) setting with the
same protocol as described for 10-Targets (all-source).
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Figure 3: Targeted adversaries pro-
duced by a TTP generator learned to
maximize the agreement with ’Fire
Truck’ distribution against Dense121
ImageNet model. 1st and 2nd rows
show clean images and unrestricted
outputs of the adversarial generator, re-
spectively. 3rd row shows adversaries
after valid projection. See Appendix F
for more qualitative examples includ-
ing comparisons between targeted pat-
terns learned by TTP from different
source models of a certain family of
networks.

Src. Attack VGG19BN Dense121 ResNet50

VGG19BN

AA [15] – 0.8 0.6
FDA-fd [13] – 3.0 2.1
FDAN [14] – 6.0 5.4
CDA [32] – 17.82 17.09
Ours-P – 48.56 44.47
Ours – 48.29 47.07

Dense121

AA [15] 0.0 – 0.0
FDA-fd [13] 34.0 – 34.0
FDAN [14] 42.0 – 48.3
CDA [32] 44.84 – 53.73
Ours-P 59.81 71.32
Ours 61.75 – 69.60

ResNet50

AA [15] 1.1 2.0 –
FDA-fd [13] 16.0 21.0 –
FDAN [14] 32.1 48.3 –
CDA [32] 68.55 75.68 –
Ours-P 75.18 85.71
Ours 79.04 84.42 –

Table 2: Target Transferability:{10-Targets (sub-source)} Top-
1 accuracy (%) across 10 targets. Our method shows significant
improvements in trasfering target perturbations compared to gen-
erative as well as feature based instance-specific method [13, 14].
Perturbation budget:l∞ ≤ 16. Only black-box attack results are
shown. Ours-P represents TTP trained on Paintings.

4.2. Attack Protocols and Results

We evaluate black-box target transferability in the fol-
lowing scenarios. (a) Unknown Target Model: Attacker has
access to a pretrained discriminator trained on labeled data
but has no knowledge about the architecture of the target
model. (b) Unknown Decision Space: Attacker has access
to the pre-trained discriminator trained on unlabeled data in
an unsupervised manner but does not know about the archi-
tecture and the class-boundary information learned by the
target model. (c) Unknown Defense: Attacker is unaware of
the type of defense deployed at the target model, or if any
defense is applied at all, e.g., the defense can be an input
processing approach or a robust training mechanism such
as adversarial training.

4.2.1 Unknown Target Model

Natural Training: We evaluate naturally trained ImageNet
models and show strong empirical results in Tables 1, 2 &
3 demonstrating that generative methods are far superior
than sample-specific targeted attacks based on boundary in-
formation [21, 4, 44] or feature exploitation [15, 13, 14].
Our approach has significantly higher target transferability
rates than previous generative methods [32, 36]. To high-
light an example from Table 2, our method achieves 47.07%
transferability from VGG19BN to ResNet50 which is 175%
and 771% better than the previous best generative [32] and
sample-specific [14] target attacks, respectively.
Ensemble Effect: We also train generators with our
algorithm on the ensembles of same-family discrimina-
tors. Specifically, we define the following ensembles:
Vens:VGG{11,13,16,19}BN ,Rens:ResNet{18,50,101,
152}, and Dens:DenseNet{121,161,169,201}.
The purpose of such ensembles is to understand if the com-
bination of weak individual models from the same fam-
ily can provide strong learning for the target distributions.
From Table 1, we observe that modeling target distribution
from an ensemble provides significantly better tranferabil-
ity than any individual discriminator (see Appendix A for
more analysis). This signifies that an attacker can use mul-
tiple variants of the same network to boost the attack.
Target Transferability and Model Disparity: We note
that within a specific family, transferring targeted pertur-
bations from a smaller model to a larger one (e.g. ResNet18
→ ResNet152 or VGG11BN → VGG19) is difficult as we
increase the size discrepancy. Interestingly, this trend re-
mains the same even from larger to smaller models i.e.,
the attack strength will increase with the disparity between
models rather than only depending upon the strength of tar-
get model. For example, target transferability ResNet152
→ ResNet50 is higher than ResNet152 → ResNet18 even
though ResNet18 is weaker than ResNet50 (Fig. 4). Similar
behaviour can be observed within cross-family models i.e.,
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Figure 4: Within Family Target Transferabil-
ity: {10-Targets (all source) settings} These
results indicate that our approach boosts tar-
get transferability within different models of
the same family with or without batch-norm
and favorably beats the previous generative
approaches (GAP [36], CDA [32]) by a large
margin. Each value is averaged across 10 tar-
gets (Sec. 4) with 49.95k ImageNet val. sam-
ples for each target. Perturbation budget is set
to l∞ = 16.
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Figure 5: Target Transferability of Unsu-
pervised Features: {10-Targets (all-source)
settings}. Our approach when applied to
unsupervised features, MoCo [9], surpasses
GAP [36] and CDA [32] that are dependent
on classification layer by design. Perturbation
budget is l∞ = 16.

target transferability from ResNet50 to Dense121 and vice
versa is higher than VGG19BN as both models share skip
connections (Table 1). See Appendix B for vulnerability of
models with and without batch-norm [16].

4.2.2 Unknown Decision Space

Here we investigate the question, “Can unsupervised
features provide targeted adversarial perturbations?” A
unique property of our proposed approach is that it can be
applied to feature space without any class boundary infor-
mation to achieve target adversarial direction. This allows
an attacker to benefit from recently proposed unsupervised
feature learning methods [9, 1]. Rather than using a dis-
criminator trained on large scale labelled data, attack can
be learned and launched from features of a discriminator
trained purely in an unsupervised fashion. Therefore, our
attack can eliminate the cost of label annotations. Results
in Fig. 5 demonstrate that our method learned from unsuper-
vised features, MoCo [9], not only provides target transfer-
ability but surpasses the previous generative methods which
are dependent on the discriminator trained on labelled data.

4.2.3 Unknown Defense Mechanisms

Input Processing as a Defense: We evaluate robustness of
different input processing based adversarial defense meth-
ods in Fig. 6. We consider the following four representative
defenses: a) JPEG with compression quality set to 50% [2],
b) DNN-Oriented JPEG compression [25], c) Median Blur
with window size set to 5×5 [31], and d) Neural representa-

Attack VGG19BN Dense121 ResNet-152 WRN-50-2 SIN [7]

GAP [36] 47.87 58.10 54.72 49.65 7.1
CDA [32] 53.41 60.34 57.67 51.23 7.6
Ours 69.55 77.48 75.74 74.61 31.0

Table 3: Target Transferability: {100-Targets (all-source)} Top-
1 target accuracy (%) averaged across 100 targets with 49.95K
ImageNet val. samples per target . Generators are trained against
ResNet50. Perturbation budget is l∞ ≤ 16.

ε Attack Augmix Stylized [7] Adversarial [40]

[10] SIN-IN SIN l∞ l2

ε=.5 ε=1 ε=.1 ε=.5

16

GAP [36] 51.57 76.92 12.96 1.88 0.34 23.41 0.92
CDA [32] 59.79 75.93 9.21 2.10 0.39 23.89 1.18
Ours 73.09 87.40 30.17 4.63 0.56 45.40 1.99
Oursens 88.79 92.96 57.75 14.23 1.24 74.95 7.62

32

GAP [36] 54.86 81.15 28.07 26.32 6.36 59.04 16.53
CDA [32] 63.18 76.81 19.65 27.60 6.74 57.54 16.07
Ours 78.66 91.27 41.52 46.82 16.35 75.97 30.94
Oursens 89.96 94.15 70.70 70.22 34.21 90.42 58.25

Table 4: Target Transferability: {10-Targets (all source) settings}
Top-1 (%) target accuracy. Generators are trained against natu-
rally trained ResNet50 or ResNet ensemble. Perturbation are then
transferred to ResNet50 trained using different methods including
Augmix [10], Stylized [7] or adversarial [40].

tion purifier (NRP) [30] which is a state-of-the-art defense.
Generators are trained against naturally trained ResNet50
and target perturbations are then transferred to VGG19BN
and Dense121 which are protected by the input processing
defenses. We observe (Fig. 6) that JPEG is the least effec-
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Figure 6: Target Transferability against In-
put Processing Defenses: {10-Targets (all-
source) settings} Input processing including
NRP [30] are broken under targeted black-
box attacks. Our method outperforms GAP
[36] and CDA [32] on all the considered de-
fenses including JPEG, JPEG-DNN [25], Me-
dian Blur and NRP [30]. Each point is an av-
eraged across 10 targets (Sec. 4) with 49.95k
ImageNet val. samples for each target. Gen-
erators are trained against ResNet50.

tive method against target attacks while JEPG-DNN [25]
performs relatively better than JPEG. Compared to JPEG,
JPEG-DNN and Median blur, NRP shows better resistance
to target attacks at l∞ ≤ 16 but quickly breaks as perturba-
tion is increased. Median blur shows more resistance than
JPEG, JPEG-DNN and NRP at higher perturbation rates
(l∞ ≤ 32)1. Success rate of our method is much better than
previous generative attacks [36, 32] even when the target
model and the input processing remain unknown (Fig. 6).
Robust Training Mechanism: Here we study the trans-
ferability of our approach against various robust training
methods (augmented vs. stylized vs. adversarial) based de-
fense strategies. Augmentation based training can make the
model robust to natural corruptions [10] while training on
stylized ImageNet [7] improves shape bias and training on
adversarial examples can improve robustness against adver-
sarial attacks at the cost of computation, clean accuracy, and
generalization to global changes [6]. We evaluate the vul-
nerability of these training methods in Table 4. Generators
are trained against naturally trained ResNet50 or ResNet en-
semble and adversarial perturbations are then transferred to
ResNet50 trained using Augmix [10], Stylized ImageNet
(SIN) [7], mixture of Stylized and natural ImageNet (SIN-
IN) and adversarial examples [40]. Target transferability
can easily be achieved against models trained on mixture
(SIN-IN), however, the model trained on stylized images
(SIN) shows higher resistance but remains vulnerable as our
target attack (ensemble) achieves ≈71% success at pertur-
bation of l∞ = 32 (Table 4). Adversarially trained models
using Madry’s method [26] are more robust to target attacks.

4.3. Ablative Analysis

In order to understand the effect of each component of
our approach, we present an ablative study in Fig. 7. Tar-
get perturbations are transferred from ResNet50 to VGG16
(SIN) trained on stylized ImageNet which is a much harder
task than transferring to naturally trained VGG16. We ob-
serve that training TTP on only distribution matching loss
(Eq. 3) increases the transferability by more than 100% in

1Blur defense causes large drop in clean accuracy (see Appendix D).
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Figure 7: Ablation: We dissect effect of each component of our
method including novel losses, augmentation, smooth projection
and epochs. Results are presented with 10-Target (all source) set-
tings. Perturbation budget is set to l∞ = 16.

comparison to GAP [36] (with cross-entropy) or CDA [32]
(with relativistic cross-entropy). Adding smoothing opera-
torW enhances the efficiency of TTP.W is a differentiable
Gaussian kernel with size 3×3. We then noticed a signifi-
cant jump in transferability when augmentations are intro-
duced and TTP is trained using both distribution matching
losses (Eq. 3 & 4) which is further complemented by neigh-
bor similarity loss (Eq. 8). Our generator trained for only
one epoch outperforms GAP and CDA trained for 20 epochs
(Fig. 7) which highlights our rapid convergence rate.

5. Conclusion
We proposed a new generative approach that can learn to

model transferable target-specific perturbations. Given an
image from any source class, our approach can synthesize
perturbations that lead to its misclassification on a variety
of black-box target models. The core of our approach is an
instance-adaptive generator function that is learned using a
novel loss formulation. Our loss focuses on matching the
distribution-level statistics of perturbed source and target
samples. By its design, our approach can work with both su-
pervised and unsupervised representations. We demonstrate
impressive transferability rates across a range of attack set-
tings compared to state-of-the-art. Our results advocate for
the use of global loss functions defined over distributions
to craft highly transferable adversarial patterns. In future
work, we plan to extend proposed method to other model
families such as vision transformers [34, 33, 18].
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Supplementary: On Generating Transferable Target Perturbations

We study the effect of augmentations and ensemble
learning by analysing class-wise transferability in Ap-
pendix A. We further discuss on why augmentations and
ensemble learning leads to more transferable targeted pat-
ters in Appendix A.1 & Appendix A.2. We then present
the vulnerability of batchnorm to black-box targeted per-
turbations in Appendix B. In Appendix C, we analyze the
effect of linear back-propagation of gradients [8] and us-
ing more gradients from skip connections [42] on the tar-
geted attack transferability. For the sake of completeness,
we report the drop in clean accuracy caused by different de-
fenses including input processing methods (JPEG, Median
Blur, and NRP), adversarial training, and stylized training
in Appendix D. Names of 100 target classes are provided
in Appendix E. Finally, we present visual illustrations to
showcase different targeted adversarial patterns found by
our method, TTP (Transferable Targeted Perturbations), in
Appendix F.

Appendix A. Effect of Augmentations and
Ensemble Learning

We proposed a mechanism to explore augmented ad-
versarial space and ensemble learning to boost transfer-
ability of the targeted adversarial perturbations found by
TTP. A per-class analysis for 10 targets presented in Ta-
ble 1 reveals that augmentations and ensemble learning in-
crease the adversarial effect for every target. TTP is trained
against naturally trained ResNet50 and ResNet ensem-
ble Rens:ResNet{18,50,101,152} and perturbations are
transferred to naturally trained VGG16 and stylized VGG16
[7]. In some cases, such as Hippopotamus, augmented
learning maximizes the transferability from ResNet50 to
naturally trained VGG16 by more than 100% (Table 1).
Similarly, we observe that ensemble learning proves to be
effective e.g., see Grey-Owl in Table 1. VGG16 trained
on stylized ImageNet showed higher resistance against tar-
geted adversarial attacks. For example, transferability of
perturbations found by TTP for French Bulldog distri-
bution is around 11% on VGG16 (SIN) as compared to 63%
on VGG16 trained on ImageNet (IN) (Table 1).

Appendix A.1. Why Augmentations boost Transfer-
ability?

Ilyas etal [12] showed that adversarial examples can be
explained by features of the attacked class label. In our tar-
geted attack case, we wish to imprint the features of the
target class distribution onto the source samples within an
allowed distance (e.g. l∞ ≤ 16). However, black-box (un-
known) model might apply different set of transformations
(from one layer to another) to process such features and re-

Clean Image

Rosehip

Dense121

Snowmobile

Dense169

Snowmobile

Figure 1: Unconstrained targeted patterns for Snowmobile are
shown to demonstrate how discriminators (models) from the same
family can capture different information to classify a certain class.
Thus, TTP when trained against ensemble of same family models
show higher transferability than any of the individual model.

duce the target transferability. Training on adversarial aug-
mented samples allows the generator to capture such tar-
geted features that are robust to transformations that may
vary from one model to another.

Appendix A.2. Why Ensemble of week Models max-
imize Transferability?

Different models of the same family of networks can ex-
ploit different information to make prediction. One such
example is shown in Fig 1. Generators are trained against
Dense121 and Dense169 to target Snowmobile distribution.
Unrestricted generator outputs reveal that Dense121 is more
focused on Snowmobile’s blades while Dense169 emphasis
background pine tree patterns to discriminate Snowmobile
samples. This complementary information from different
models of the same family helps the generator to capture
more generic global patterns for a given target distribution.

Appendix B. The Vulnerability of Batchnorm
Batchnorm [16] helps in optimization of neural networks

as well as increases their clean accuracy. However, our em-
pirical cross-family (Dense → VGGBN , Dense → VGG,
ResNet → VGGBN , ResNet → VGG) analysis presented
in Fig. 2 suggests that batchnorm makes the model more
vulnerable to the targeted adversarial attacks. Adversarial
perturbations found by TTP transfer better against mod-
els trained using batchnorm as compared to models trained
without it (Fig. 2).

Appendix C. Skip Connections and Linear
Back-Propagation of Gradients

Dongxian et al. [42] observed that while back-
propagating, giving more importance to the gradients com-
ing from skip connections can enhance adversarial transfer-
abililty. Similarly, Guo et al. [8] showed that encouraging
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Average

ResNet50 7 56.5 80.9 49.0 43.9 61.9 82.9 56.5 89.4 41.3 72.9 63.5
ResNet50 3 56.7 84.1 63.7 94.9 79.5 91.5 76.5 89.8 70.4 80.8 78.8
Rens 3 85.1 94.5 63.3 97.8 90.5 95.8 90.7 96.1 89.6 90.4 89.1

Target Model: VGG16 (SIN)

ResNet50 7 1.61 43.1 0.50 40.9 14.9 9.6 5.8 36.2 6.2 19.2 17.8
ResNet50 3 1.30 69.6 11.6 68.7 17.0 15.2 20.5 33.2 35.4 30.9 30.3
Rens 3 17.6 77.7 11.4 77.0 59.7 48.4 56.1 72.8 74.1 41.2 53.6

Table 1: Per Target Transferability of our Method (TTP): Top-1 target accuracy (%) with 49.95K ImageNet val. samples for each target.
Perturbation budget: l∞ ≤ 16. Adversarial perturbations are transferred from naturally trained ResNet50 and ResNet ensemble to naturally
trained VGG16 and stylized VGG16 [7]. Augmentations as well as ensemble learning improves efficiency of TTP.
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59.1 49.4 55.1 51.2
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44.5 39.4 50.2 45.8

43.5 41.9 51.9 43.5

VGG11BN VGG13BN VGG16BN VGG19BN
Target Models

ResNet18

ResNet50

ResNet101

ResNet152

So
ur

ce
 M

od
el

s

69.0 69.0 66.5 56.1

78.0 79.8 81.7 78.2

65.2 68.0 70.3 67.3

74.2 68.7 76.4 67.8

VGG11 VGG13 VGG16 VGG19
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69.5 56.3 56.3 52.7

71.7 67.6 78.8 73.2

57.1 54.5 64.0 55.2

64.9 56.8 64.1 61.3

Figure 2: Batchnorm Vulnerability to Targeted Transferability : {10-Targets (all source) settings}. TTP (Algorithm 1 in the paper)
strength is higher against models trained naturally with batchnorm as compared to without batchnorm. Batchnorm [16] provides better
optimization and increase model clean accuracy but these empirical results indicate that it also make the model more vulnerable to blackbox
targeted attacks. Each value is averaged across 10 targets (see Section 4 in the paper for details) with 49.95k ImageNet val. samples for
each target. Perturbation budget is l∞ = 16.
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PGD [26] 0.8/2.1 1.9/3.7 3.0/4.7 2.5/4.4 0.3/1.5 0.4/1.3 0.1/0.4 0.1/0.3 0.0/0.0 0.0/0.0
MI [4] 1.5/1.8 3.2/6.2 3.1/5.6 3.0/4.6 1.1/1.4 1.0/1.6 0.3/0.9 0.2/0.4 0.0/0.1 0.0/0.0
DIM [44] 10.4/14.4 16.2/26.0 13.4/20.9 13.4/19.8 6.4/6.7 4.8/7.7 1.7/3.2 0.5/1.2 0.2/0.5 0.1/0.1
Po-TRIP [21] 12.5/15.0 18.2/30.0 15.9/23.7 14.2/22.3 7.3/8.9 5.5/9.0 2.1/3.7 0.8/2.0 0.3/0.7 0.1/0.1
FDA-fd [13] 16.0/25.3 21.0/33.1 19.7/32.9 17.1/28.4 12.0/18.7 15.3/19.3 3.1/6.3 1.2/3.0 0.1/1.9 0.1/0.3
FDA-N [14] 32.1/38.6 48.3/52.3 37.5/39.0 35.5/40.7 19.0/28.3 20.3/30.3 5.0/16.6 3.0/10.7 0.6/4.7 0.2/0.8
SGM [42] 19.2/26.3 25.9/40.6 19.7/31.1 21.6/30.4 13.5/13.7 10.5/15.9 2.6/6.1 1.3/2.8 0.5/1.2 0.1/0.3
SGM [42] + LinBP [8] 22.0/27.1 34.5/40.0 30.5/32.9 25.1/21.0 14.8/15.0 17.3/25.3 4.6/14.3 2.4/8.0 0.3/2.9 0.1/0.3
Ours (TTP) 79.0/81.4 84.4/87.0 81.9/86.6 80.2/81.2 79.4/78.2 72.7/81.2 30.5/42.4 29.3/36.9 5.5/50.1 0.4/17.1

Table 2: Target Transferability: {10-Targets (sub-source)} Top-1 target accuracy (%) averaged across 10 targets. Perturbation budget:
l∞ ≤ 16/32. SIN [7] and Adv (l∞=0.5), and Adv (l∞=1.0) [40] are ResNet50 models trained using stylized and adversarial examples,
respectively. Augs. represents augmentation based training [10] of ResNet50.

Model Defense Accuracy Difference

VGG19BN

– 74.24 0.0
JPEG 67.34 -6.90
Blur 53.86 -20.38
NRP 72.00 -2.24

Dense121

– 74.65 0.0
JPEG 68.92 -5.73
Blur 61.27 -13.38
NRP 72.01 -2.63

ResNet50

– 76.15 0.0
JPEG 70.82 -5.33
Blur 61.30 -14.85
NRP 73.21 -2.94

Table 3: Effect of Input Processing on Clean Accuracy: Top-1
(%) accuracy on ImageNet val. set (50k images). Median Blur
with window size 5×5 causes large drop in clean accuracy while
NRP [30] has the least effect on the model’s clean accuracy.

linearity while back-propagating gradients improve trans-
ferability. Here, we analyze target transferability of both of
these techniques [42, 8] and present a holistic comparison
between all the considered iterative and generative attacks
in Table 2. Our approach sets new state-of-the-art.

Appendix D. Clean Accuracy vs. Defenses

We evaluate the effect of different defenses on model’s
clean accuracy. We study the input processing methods in-
cluding JPEG with quality 50% [31], Median Blur with ker-
nel size 5×5 [31] and NRP [30] as well as different training
mechanisms including Augmix [10], stylized [7] and adver-
sarial training methods [26, 40]. Results are presented in
Tables 3 & 4. We observe that Median Blur causes a signif-

Model Training Type Accuracy Difference

ResNet50

IN 76.15 0.0
SIN 60.18 -15.97

SIN-IN 74.59 -1.56
Augmix 77.53 +1.38

Adv. (l∞, ε = .5) 73.73 -2.42
Adv. (l∞, ε = 1) 72.05 -4.10
Adv. (l2, ε = .1) 74.78 -1.37
Adv. (l2, ε = .5) 73.16 -2.99

VGG16 IN 71.59 0.0
SIN 52.26 -19.33

Table 4: Effect of Robust Training on Clean Accuracy: Top-1
(%) accuracy on ImageNet val. set (50k images). Every training
mechanism with the exception of Augmix [10] reduces model’s
clean accuracy. Stylized training [7] causes significant drop in ac-
curacy in comparison to other types of training methods.

icant drop in clean accuracy (Table 3) while among training
methods, stylized training (SIN) [7] has the most negative
effect on the clean accuracy.

Appendix E. 100 Targets Names

The performance of TTP is evaluated against the fol-
lowing randomly selected 100 targets (see Sec. 4.1 of the
paper). We divide ImageNet classes into 100 mutually ex-
clusive sets. Each set contains 10 classes. We randomly
selected one target from each set.
Tiger-Shark, Bulbul, Grey-Owl, Terrapin,
Komodo-Dragon, Thunder-Snake, Trilobite,
Scorpion, Quail, Goose, Jellyfish, Slug,
Flamingo, Bustard, Dowitcher, Chihuahua,
Beagle, Weimaraner, Lakeland-Terrier,
Australian-Terrier, Golden-Retriever,



English-Setter, Komondor, Appenzeller,
French-Bulldog, Chow, Keeshond, Hyaena,
Egyptian-Cat, Lion, Bee, Leafhopper, Sea-Urchin,
Zebra, Hippopotamus, Polecat, Gorilla,
Langur, Eel, Anemone-Fish, Airliner, Banjo,
Bassinet, Beaker, Bell-Cote, Bookcase, Buckle,
Cannon, CD-Player, Chain-Saw, Coil, Cornet,
Crutch, Dome, Electric-Guitar, Fire-Truck,
Garbage-Truck, Greenhouse, Grocery-Store,
Honeycomb, iPod, Jigsaw-Puzzle, Lipstick,
Maillot, Maze, Military-Uniform, Model-T,
Neck-Brace, Overskirt, Parachute, Pay-Phone,
Pickup, Pirate-Ship, Poncho, Purse, Rain-Barrel,
Rotisserie, School-Bus, Sewing-Machine,
Shopping-Cart, Snowmobile, Spatula, Stove,
Sunglass, Teapot, Toaster, Tractor, Umbrella,
Velvet, Wallet, Whiskey-Jug, Street-Sign,
Ice-Lolly, Pretzel, Cardoon, Hay, Pizza, Volcano,
Rapeseed, Agaric

Appendix F. Visual Demos
Figures 3, 4, 5, 6, 7 and 8 show different targeted pat-

terns produced by TTP trained against naturally trained
ResNet50. We demonstrate how adversarial patterns evolve
as TTP learns to model a certain target distribution from
different networks of the same family in Figures 9 and 10.



Original Images

Source model: ResNet50, Target Distribution: Jellyfish, Transferabiliy to Dense121: 90.05 %

Source model: ResNet50, Target Distribution: Lipstick, Transferability to Dense121: 95.20 %

Figure 3: Targeted adversaries produced by TTP (before and after valid projection) trained against ResNet50. Observe that adversarial
patterns are not constant rather TTP adapts to the input sample and adds different patterns to different samples to achieve maximum
transferability. Transferability is measured as Top-1 target accuracy on the ImageNet val. set (49.95k samples excluding the target images).



Original Images

Source model: ResNet50, Target Distribution: Stove, Transferabiliy to Dense121: 36.86%

Source model: ResNet50, Target Distribution: Rapeseed, Transferabiliy to Dense121: 49.59%

Figure 4: Targeted adversaries produced by TTP (before and after valid projection) trained against ResNet50. Observe that adversarial
patterns are not constant rather TTP adapts to the input sample and adds different patterns to different samples to achieve maximum
transferability. Transferability is measured as Top-1 target accuracy on the ImageNet val. set (49.95k samples excluding the target images).



Original Images

Source model: ResNet50, Target Distribution: Banjo, Transferabiliy to Dense121: 82.95%

Source model: ResNet50, Target Distribution: Anemone Fish, Transferabiliy to Dense121: 74.45%

Figure 5: Targeted adversaries produced by TTP (before and after valid projection) trained against ResNet50. Observe that adversarial
patterns are not constant rather TTP adapts to the input sample and adds different patterns to different samples to achieve maximum
transferability. Transferability is measured as Top-1 target accuracy on the ImageNet val. set (49.95k samples excluding the target images).



Original Images

Source model: ResNet50, Target Distribution: Parachute, Transferabiliy to Dense121: 95.30%

Source model: ResNet50, Target Distribution: Sea Urchin, Transferabiliy to Dense121: 89.10%

Figure 6: Targeted adversaries produced by TTP (before and after valid projection) trained against ResNet50. Observe that adversarial
patterns are not constant rather TTP adapts to the input sample and adds different patterns to different samples to achieve maximum
transferability. Transferability is measured as Top-1 target accuracy on the ImageNet val. set (49.95k samples excluding the target images).



Original Images

Source model: ResNet50, Target Distribution: iPOD, Transferabiliy to Dense121: 69.86%

Source model: ResNet50, Target Distribution: Buckle, Transferabiliy to Dense121: 77.06%

Figure 7: Targeted adversaries produced by TTP (before and after valid projection) trained against ResNet50. Observe that adversarial
patterns are not constant rather TTP adapts to the input sample and adds different patterns to different samples to achieve maximum
transferability. Transferability is measured as Top-1 target accuracy on the ImageNet val. set (49.95k samples excluding the target images).



Original Images

Source model: ResNet50, Target Distribution: Bookcase, Transferabiliy to Dense121: 85.21%

Source model: ResNet50, Target Distribution: Sewing Machine, Transferabiliy to Dense121: 67.26%

Figure 8: Targeted adversaries produced by TTP (before and after valid projection) trained against ResNet50. Observe that adversarial
patterns are not constant rather TTP adapts to the input sample and adds different patterns to different samples to achieve maximum
transferability. Transferability is measured as Top-1 target accuracy on the ImageNet val. set (49.95k samples excluding the target images).
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Figure 9: Evolution of TTP: Unconstrained targeted adversarial patterns generated by TTP are shown to demonstrate how TTP evolves
as it learns perturbations from different source models of a certain family of networks.
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Figure 10: Evolution of TTP: Unconstrained targeted adversarial patterns generated by TTP are shown to demonstrate how TTP evolves
as it learns perturbations from different source models of a certain family of networks.


